An improved prairie dog optimization algorithm integrating multiple strategies and its application

Author:

Wang Yan,Wang NanORCID,Gao TengORCID,Bu Fanyang,Zhu Xiqian

Abstract

Abstract Aiming at the problems in prairie dog optimization (PDO), such as uneven population distribution at initialization, slow convergence, imbalance between global exploration and local exploitation, and the tendency to get trapped in the local optimum, this study proposes an Improved prairie dog optimisation algorithm integrating multiple strategies (IMSPDO). Firstly, the population is initialized using spatial pyramid matching (SPM) chaotic mapping combined with improved random opposition-based learning (IROL) to solve the problems of uneven distribution and poor diversity of the population. Secondly, the prey escapes energy formula mentioned in the harris hawks optimization (HHO) is introduced to achieve the smooth transition between the exploration phase and the exploitation phase, balancing the algorithm’s global exploration capability and local exploitation capability. Additionally, the idea of the particle swarm optimization (PSO) is applied to enhance the global optimization capability of the algorithm. Finally, the ideas of simulated annealing (SA), polynomial mutation and Cauchy mutation are also introduced to improve the ability that individuals to jump out of the local optimum. The performance of the improved algorithm is verified on a set of 21 classical benchmark functions and 8 CEC2020 test functions. The proposed IMSPDO is also evaluated against original PDO, and six other commonly used algorithms. The result of the Wilcoxon rank-sum test shows that there is a significant difference between the selected algorithms and IMSPDO. Furthermore, 3 engineering examples are used to further test the superiority of IMSPDO in dealing with real-world problems.

Funder

The Scientific Research Project for Institutes of Higher Learning, Ministry of Education, Liaoning Province

Publisher

IOP Publishing

Reference38 articles.

1. Particle swarm optimization;Kennedy,1995

2. Simulated annealing;Bertsimas;Statistical Science,1993

3. Optimization by simulated annealing;Kirkpatrick;Science,1983

4. The whale optimization algorithm;Mirjalili;Adv. Eng. Software,2016

5. Genetic algorithms;Holland;Sci. Am.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3