Fabrication and characterization of titanium-alloy 3D printed solenoid inductors and their sensor applications

Author:

Tan Jun Ying,Ciappesoni Mark,Kim Sung JinORCID,Kim Jungkwun ‘JK’ORCID

Abstract

Abstract Recent progress in 3D printing has brought many interests in developing functional devices in various applications by enabling the exploration of complex 3D structures. This paper presents the first fully metal printed standalone 3D solenoid microinductors using a high-power laser with a biocompatible Ti-alloy. Fine powder-based 6AL-4V Eli Titanium was directly printed using an automated gantry laser system with 60 μm resolution to form the inductors without any substrate. A substrate-less 10-turn solenoid as a testbed was printed out and characterized, and additional designs of 20 and 40 turn inductors were further explored. The wire of the inductor was designed to have a 700-micron square cross-section and a winding gap of 300 microns. The successfully fabricated 10-turn titanium-alloy solenoid inductor showed an average inductance of 130 nH, a low-frequency resistance of 0.8 ohms at 0.3 MHz, and a quality factor of 10.5 at 30 MHz respectively. Additional electrodeposition of copper to the 10-turn inductor demonstrated process compatibility with the conventional micromachining process. The standalone inductor printing method saves a significant volume from where the conventional substrate dimensions often take more than the volume of the device. Also, the standalone inductor can directly be used as a sensor device. Examples of force-displacement sensing applications were presented using the 10-turn and 19-turn round edge solenoid inductors.

Funder

National Science Foundation

NASA

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3