Impact of HPA nonlinearity on the performance of power domain OFDM-NOMA system

Author:

Mounir MohamedORCID,El Mashade Mohamed Bakry,Aboshosha Ashraf Mohamed,Youssef Mohamed Ibrahim

Abstract

Abstract Non-orthogonal multiple access (NOMA) is expected to be used in beyond fifth-generation (B5G) and sixth-generation (6G) mobile networks to support ultra-massive connectivity. Since the two preceding mobile networks generations used orthogonal frequency division multiplexing (OFDM), NOMA is expected to be combined with OFDM. Unfortunately, the OFDM signal suffers from a high peak to average power ratio (PAPR) that limits its performance as it passes through the nonlinear high power amplifier (HPA). In literature, few works have studied the effect of nonlinear distortion on OFDM-NOMA. Furthermore, the HPA models used in previous works to describe the impact of nonlinear distortion on OFDM-NOMA in downlink (DL) were impractical or inaccurate. In contrast, this work uses the well-known soft limiter (SL) model with input back-off (IBO) as a practical controlling parameter. Also, instead of investigating the effect of nonlinear distortion on OFDM-NOMA in DL only, this work investigated this effect in both DL and uplink (UL). In particular, during this work, the performance of the OFDM-NOMA system in the presence of nonlinear distortion in both UL and DL is investigated in terms of users’ achievable data rate, sum rate capacity, system fairness, and the bit error rate (BER) of each user. Results showed that, in DL, the NU is the most affected by the nonlinear distortion, while, in UL, the nonlinear distortion caused by the NU’s HPA is more severe than the nonlinear distortion caused by other users.

Publisher

IOP Publishing

Subject

General Engineering

Reference40 articles.

1. The Road Towards 6G: a comprehensive survey;Jiang;IEEE Open Journal of the Communications Society,2021

2. 6G wireless systems: vision, requirements, challenges, insights, and opportunities;Tataria;Proc. IEEE,2021

3. On the selection of power allocation strategy in power domain non-orthogonal multiple access (PD-NOMA) for 6G and beyond;Mounir;Transactions on Emerging Telecommunications Technologies

4. A Survey of NOMA: current status and open research challenges;Makki;IEEE Open Journal of the Communications Society,2020

5. A survey of rate-optimal power domain noma with enabling technologies of future wireless networks;Maraqa;IEEE Communications Surveys Tutorials,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3