Abstract
Abstract
We demonstrate band to band tunneling (BTBT) in a carbon nanotube (CNT) field effect transistor. We employ local electrostatic doping assisted by charged traps within the oxide to produce an intramolecular PN junction along the CNT. These characteristics apply for both metallic (m-CNTs) and semiconducting (SC-CNTs) CNTs. For m-CNTs we present a hysteretic transfer characteristic which originates from local electrostatic doping in the middle segment of the CNT. This controlled doping is reversible and results in formation and destruction of a PN junction along the CNT channel. For SC-CNTs we observe BTBT, and analysis based on the WKB approximation reveals a very narrow depletion region and high transmission probability at the optimal energy bands overlap. These results may assist in developing a non-volatile one-dimensional PN junction memory cell and designing a tunneling based field effect transistor.
Funder
ministery of science and technology
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献