The role of point defects related with carbon impurity on the kink of log J–V in GaN-on-Si epitaxial layers

Author:

Song ChunyanORCID,Liao Hui,Yang Ningxuan,Wang Rui,Tang Guanghui,Cao Weicheng

Abstract

Abstract Carbon impurity as point defects makes key impact on the leakage in GaN-on-Si structures. GaN-based epitaxial layers with different point defects by changing carbon-doped concentration were used to investigate the point defects behavior. It was found that leakage mechanisms correspond with space-charge-limited current models at low voltages, and after 1st kink, electron injection from silicon to GaN and PF conduction play a key role in the leakage of both point defects case with low carbon and high carbon doped. In addition, high carbon in GaN-on-Si epitaxial layers obtained lower leakage and larger breakdown voltage. The slope of log JV has two kinks and effective energy barrier E a has two peaks, 0.4247 eV at about 300 V and 0.3485 eV at about 900 V, respectively, which is related to accepted states and donor states related with carbon impurity. While the slope of log JV has one kink and effective energy barrier E a has one peak, 0.4794 eV at about 400 V of low carbon in GaN-on-Si epitaxial layers, indicating only field-induced accepted ionized makes impact on leakage. The comparative results of more donor trap density in high carbon indicate point defects related with carbon impurity play a key role in the kinks of log JV slope.

Funder

Scientific Research Project of Shihezi University

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3