Embedded ultra-high stability flexible transparent conductive films based on exfoliated graphene-silver nanowires-colorless polyimide

Author:

Qian Peng-Fei,Wang Jing-Qi,Wang Tao,Huai Xuguo,Geng Wen-Hao,Zhu Qiangxia,Tian Ying,Jing Li-Chao,Bao Ze-Long,Geng Hong-ZhangORCID

Abstract

Abstract Transparent conductive films with high stability were prepared by embedding silver nanowires in colorless polyimide and adding a protective layer of exfoliated graphene. The films exhibit great light transmission and conductivity with a sheet resistance of 22 Ω sq−1 at transmittance of 83%. Due to its special embedded structure, the conductive layer can withstand several peeling experiments without falling off. In addition, the most outstanding advantage is the ultra-high stability of the films, including high mechanical robustness, strong chemical corrosion resistance and high operating voltage capacity. The organic light-emitting diode devices prepared based on this transparent conductive electrode exhibit comparable efficiency to indium tin oxide (ITO) based devices, with C.E. max = 2.78 cd A−1, P −1 .E. max = 1.89 lm W−1, EQE max = 0.89%. Moreover, the efficiencies were even higher than that of ITO devices when the operating voltage of the device exceeds 5 V. The above performances show that the transparent conductive electrode based on this structure has high potential for application in organic electronic devices.

Funder

Science and Technology Program of Tianjin, China

Natural Science Foundation of Tianjin, China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3