CPA-induced Hz to THz broadband absorber with switchable perfect absorption between radio-microwave and THz frequency spectrum

Author:

Khan Mohd Salman,Giri PushpaORCID,Varshney GauravORCID,Sharma Ajay K

Abstract

Abstract The coherent perfect absorption (CPA) occurring in the graphene sheet suspended in air can be utilized to develop an ultrathin, ultra-broadband absorber working in the frequency range from a few hertz (Hz) to terahertz (THz) with perfect absorption. A graphene sheet is studied to induce the CPA to cover radio, microwave and lower THz frequency ranges. A graphene resonator able to provide the surface plasmon resonance (SPR) is combined with the graphene sheet to provide CPA at either side of a thin dielectric layer forms metamaterial structure with the cavity and enhances the absorption bandwidth in the THz region by creating a resonance near quasi-CPA frequency. A dielectric silicon resonator is embedded in the structure, which creates dipolar resonances between the resonances obtained by the formed cavity between the graphene sheet and resonator. This enhances the absorption level in the THz region. The absorption bandwidth is further enhanced to 7 THz by including a graphene disc at the top of the silicon resonator. Thus, the multiple multi-order resonances occurring in the silicon dielectric and SPR of graphene resonators are merged with the phenomena of CPA occurring in the graphene sheets to extend the CPA bandwidth in the THz regime. The doping level of graphene or its tunable Fermi energy based on the applied DC electric field provides the tunability in the total obtained absorption bandwidth. The symmetric structure provides polarization-insensitive behavior with an allowed incident angle of more than 45° with more than 90% absorption.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3