Site-selective core/shell deposition of tin on multi-segment nanowires for magnetic assembly and soldered interconnection

Author:

Fratto EdwardORCID,Wang JiruiORCID,Yang ZhengyangORCID,Sun HongweiORCID,Gu ZhiyongORCID

Abstract

Abstract The field of nanotechnology continues to grow with the ongoing discovery and characterization of novel nanomaterials with unconventional size-dependent properties; however, the ability to apply modern manufacturing strategies for practical device design of these nanoscale structures is significantly limited by their small size. Although interconnection has been previously demonstrated between nanoscale components, such approaches often require the use of expensive oxidation-resistant noble metal materials and time-consuming or untargeted strategies for welded interconnection such as laser ablation or plasmonic resonance across randomly oriented component networks. In this work, a three-segment gold–nickel–gold nanowire structure is synthesized using templated electrodeposition and modified via monolayer-directed aqueous chemical reduction of tin solder selectively on the gold segments. This core/shell nanowire structure is capable of directed magnetic assembly tip-to-tip and along substrate pads in network orientation. Upon infrared heating in a flux vapor atmosphere, the solder payload melts and establishes robust and highly conductive wire–wire joints. The targeted solder deposition strategy has been applied to various other multi-segment gold/nickel nanowire configurations and other metallic systems to demonstrate the capability of the approach. This core/shell technique of pre-loading magnetically active nanowires with solder material simplifies the associated challenges of size-dependent component orientation in the manufacture of nanoscale electronic devices.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

IOP Publishing

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3