Abstract
Abstract
Electron beam lithography (EBL) is the state-of-the-art technique for rapid prototyping of nanometer-scale devices. Even so, processing speeds remain limited for the highest resolution patterning. Here, we establish Mr-EBL as the highest throughput negative tone electron-beam-sensitive resist. The 10 μC cm−2 dose requirement enables fabricating a 100 mm2 photonic diffraction grating in a ten minute EBL process. Optimized processing conditions achieve a critical resolution of 75 nm with 3× faster write speeds than SU-8 and 1–2 orders of magnitude faster write speeds than maN-2400 and hydrogen silsesquioxane. Notably, these conditions significantly differ from the manufacturers’ recommendations for the recently commercialized Mr-EBL resist. We demonstrate Mr-EBL to be a robust negative etch mask by etching silicon trenches with aspect ratios of 10 and near-vertical sidewalls. Furthermore, our optimized processing conditions are suitable to direct patterning on integrated circuits or delicate nanofabrication stacks, in contrast to other negative tone EBL resists. In conclusion, Mr-EBL is a highly attractive EBL resist for rapid prototyping in nanophotonics, MEMS, and fluidics.
Funder
Defense Advanced Research Projects Agency
National Institutes of Health
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献