Investigating the influence of temperature-dependent rheological properties on nanofluid behavior in heat transfer

Author:

Hassan Mohsan,Rizwan Muhammad,Bhatti M MORCID

Abstract

Abstract Nanofluids are advanced heat transfer fluids whose performance is influenced by various thermo-physical properties, including nanoparticle volume fraction, base fluid, and temperature. Rheological mathematical models have been established by using empirical data in order to characterize these features as dependent on parameters such as volume fraction, base fluid composition, and temperature. These models have been integrated into transport equations. Nanofluids composed of metallic oxides (Al2O3, SiO2) and carbon nanostructures (PEG-GnP, PEG-TGr) dispersed in deionized H2O, with nanoparticle concentrations ranging from 0.025% to 0.1%, and temperatures between 30 °C and 50 °C, were utilized to investigate flow over thin needle. The rheological models contained transport equations include the partial differential equations. The transport equations were simplified through various transformations and then solved numerically. The results in form of velocity and temperature distributions were obtained, along with boundary layer parameters, Nusselt number and coefficient of skin friction. The present study contributes to the existing knowledge by elucidating the intricate relationship between nanoparticle volume fraction, base fluid properties, and temperature in nanofluid behavior.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3