Abstract
Abstract
Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C60 fluorescent nanoparticle (C60 FNP) was synthesized by a combination of thiol–ene chemistry and modification with folic acid (FA). The as-prepared C60 FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C60 FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80 μM and a detection limit of 0.24 μM. Satisfactory recoveries (95.4%–105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C60 FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging.
Funder
the Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献