Abstract
Abstract
In this article, we aim to develop and study a highly sensitive and selective cm2 scale graphene-based gas sensor. We present the technology used to fabricate sensors which integrate monolayer chemical vapour deposition graphene: photolithography and transfer of layers. Characterization techniques (optical microscopy, AFM, micro-Raman spectroscopy, transport electrical measurements) ensure a diagnosis of graphene ribbons and allow good reproducibility of technological processes. We present the results of gas characterizations after a 200 ppm NO2 exposure. We propose a novel approach for the modelling of the sensor response with a three-site adsorption/desorption Langmuir model. This innovative way of modelling the sensor response should provide a better understanding of the sensor’s kinetic and help to overcome the long response time observed with graphene gas sensors.
Funder
Agence Nationale de la Recherche
The Région Grand Est and the European fond Feder