Gas-solid interfacial charge transfer in volatile organic compound detection by CuCrO2 nanoparticles

Author:

Xu Sifan,Zhao Tingting,Kong Lingwei,Zhu WenhuanORCID,Bo Maolin,Huang YizhongORCID,Liu HaiORCID

Abstract

Abstract Nanostructured metal oxide semiconductors have received great attention used as the chemiresistive layer of gas sensor to detect the volatile organic compound recently. As indispensable complementary parts for dominative n-type semiconductors, the p-type metal oxides based gas sensors fail to be studied sufficiently, which hampers their practical applications. In this work, the p-type delafossite CuCrO2 nanoparticles were synthesized, characterized, and tested for gas sensing, followed by the first principles calculations to simulate the generation of chemiresistive signal. The hydrothermal synthesis time of CuCrO2 nanoparticles is optimized as 24 h with a higher proportion of oxygen vacancies but a smaller size, which is confirmed by the microscopy and spectrum characterization and allows for a prevailing gas sensitivity. Meanwhile, this CuCrO2 gas sensor is proven to perform a higher selectivity to n-propanol and a low detection limit of 1 ppm. The adsorption sites and charge variations of dehydrogenation at the gas-solid interface predicted by the theoretical analysis are claimed to be crucial to such selectivity. It is an innovative approach to understand the chemiresistive gas sensing by evaluating the preference of charge transfer between the sensor and target gaseous molecule, which provides a new route to precisely design and develop the advanced sensing devices for the diverse applications.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3