Impact of synthesis temperature and precursor ratio on the crystal quality of MOCVD WSe2 monolayers

Author:

Grundmann AnnikaORCID,Beckmann YannickORCID,Ghiami AmirORCID,Bui MinhORCID,Kardynal Beata,Patterer LenaORCID,Schneider JochenORCID,Kümmell TilmarORCID,Bacher GerdORCID,Heuken MichaelORCID,Kalisch Holger,Vescan AndreiORCID

Abstract

Abstract Structural defects in transition metal dichalcogenide (TMDC) monolayers (ML) play a significant role in determining their (opto)electronic properties, triggering numerous efforts to control defect densities during material growth or by post-growth treatments. Various types of TMDC have been successfully deposited by MOCVD (metal-organic chemical vapor deposition), which is a wafer-scale deposition technique with excellent uniformity and controllability. However, so far there are no findings on the extent to which the incorporation of defects can be controlled by growth parameters during MOCVD processes of TMDC. In this work, we investigate the effect of growth temperature and precursor ratio during MOCVD of tungsten diselenide (WSe2) on the growth of ML domains and their impact on the density of defects. The aim is to find parameter windows that enable the deposition of WSe2 ML with high crystal quality, i.e. a low density of defects. Our findings confirm that the growth temperature has a large influence on the crystal quality of TMDC, significantly stronger than found for the W to Se precursor ratio. Raising the growth temperatures in the range of 688 °C to 791 °C leads to an increase of the number of defects, dominating photoluminescence (PL) at low temperatures (5.6 K). In contrast, an increase of the molar precursor ratio (DiPSe/WCO) from 1000 up to 100 000 leads to less defect-related PL at low temperatures.

Funder

Deutsche Forschungsgemeinschaft

International Max Planck Research School (IMPRS) for Interface Controlled Materials for Energy Conversion

Federal Ministry for Education and Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3