Tuning spinterface properties in iron/fullerene thin films

Author:

Mallik Srijani,Mohd Amir Syed,Koutsioubas AlexandrosORCID,Mattauch Stefan,Satpati Biswarup,Brückel Thomas,Bedanta SubhankarORCID

Abstract

Abstract In ferromagnetic (FM) metal/organic semiconductor (OSC) heterostructures charge transfer can occur which leads to induction of magnetism in the non-magnetic OSC. This phenomenon has been described by the change in the density of states in the OSC which leads to a finite magnetic moment at the OSC interface and it is called the ‘spinterface’. One of the main motivations in this field of organic spintronics is how to control the magnetic moment in the spinterface. In this regard, there are several open questions such as (i) which combination of FM and OSC can lead to more moment at the spinterface? (ii) Is the thickness of OSC also important? (iii) How does the spinterface moment vary with the FM thickness? (iv) Does the crystalline quality of the FM matter? (v) What is the effect of spinterface on magnetization reversal, domain structure and anisotropy? In this context, we have tried to answer the last four issues in this paper by studying Fe/C60 bilayers of variable Fe thickness deposited on Si substrates. We find that both the induced moment and thickness of the spinterface vary proportionally with the Fe thickness. Such behavior is explained in terms of the growth quality of the Fe layer on the native oxide of the Si (100) substrate. The magnetization reversal, domain structure and anisotropy of these bilayer samples were studied and compared with their respective reference samples without the C60 layer. It is observed that the formation of spinterface leads to a reduction in uniaxial anisotropy in Fe/C60 on Si (100) in comparison to their reference samples.

Funder

Department of Science and Technology, Govt. of India

Department of Science and Technology - Science and Engineering Research Board, Govt. of India

Department of Atomic Energy, Government of India

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3