Abstract
Abstract
With its excellent mechanical and thermal properties, bilayer graphane is a promising material for realizing future nanoelectromechanical systems. In this study, we focus on the auxetic behavior of bilayer graphane under external loading along various directions through atomistic simulations. We numerically and theoretically reveal the mechanism of the auxeticity in terms of intrinsic interactions between carbon atoms by constructing bilayer graphane. Given that the origin of the auxeticity is intrinsic rather than extrinsic, the work provides a novel technique to control the dimensions of nanoscale bilayer graphane by simply changing the external conditions without the requirement of complex structural design of the material.
Funder
Ulsan National Institute of Science and Technology
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献