Abstract
Abstract
Organo-lead halide perovskite materials have opened up a great opportunity to develop high performance photodetectors because of their superior optoelectronic properties. The main issue with perovskite-only photodetector is severe carrier recombination. Integration of perovskite with high-conductive materials such as graphene or transition metal sulfides certainly improved the photoresponsivity. However, achieving high overall performance remains a challenge. Here, an improved photodetector is constructed by perovskite quantum dots (QDs) and atomic layer deposited ultrathin TiO2 films. The designed CH3NH3PbBr3 QD/TiO2 bilayer device displays inclusive performance with on/off ratio of 6.3 × 102, responsivity of 85 A W−1, and rise/decay time of 0.09/0.11 s. Furthermore, we demonstrate that interface plays a crucial role in determining the device current and enhance the overall performance of heterostructure photodetector through interface engineering. We believe that this work can provide a strategy to accelerate development of high-performance solution-processed perovskite photodetectors.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献