Abstract
Abstract
We present our work on the rapid hydrothermal synthesis of highly crystalline 2D SnS nanostructures. An innovative idea is used in which thioglycolic acid is the sulfur precursor source. Structural studies indicate the material has grown in a single-phase orthorhombic structure. The single-phase formation of the material is also confirmed from the rietveld refinement of the experimental XRD data and by raman spectroscopic analysis. Morphological studies show the formation of 2D sheets having thickness in the nanoscale (100–150 nm) dimensions. Optical absorbance studies show the material is visible-light active exhibiting an indirect bandgap of 1.1 eV and direct band gap ∼1.7 eV. Density functional theory calculations support the experimental bandgap results. Photocatalytic activity of the nanosheets was investigated against methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes employing a solar simulator as the source of photons (light source). The nanosheets were found to photodegrade 80% of MB, 77% of RhB and 60% of MO in 120 min of light illumination. Reusability and post catalytic properties affirm the durability and stability of the nanosheets, which is very important in the context of waste water treatment considering the toxic nature of the effluents from dye industries.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献