Thioglycolic acid assisted hydrothermal growth of SnS 2D nanosheets as catalysts for photodegradation of industrial dyes

Author:

Zaman M BurhanuzORCID,Poolla RajaramORCID,Khandy Shakeel AhmadORCID,Modi Anchit,Tiwari Rajendra Kumar

Abstract

Abstract We present our work on the rapid hydrothermal synthesis of highly crystalline 2D SnS nanostructures. An innovative idea is used in which thioglycolic acid is the sulfur precursor source. Structural studies indicate the material has grown in a single-phase orthorhombic structure. The single-phase formation of the material is also confirmed from the rietveld refinement of the experimental XRD data and by raman spectroscopic analysis. Morphological studies show the formation of 2D sheets having thickness in the nanoscale (100–150 nm) dimensions. Optical absorbance studies show the material is visible-light active exhibiting an indirect bandgap of 1.1 eV and direct band gap ∼1.7 eV. Density functional theory calculations support the experimental bandgap results. Photocatalytic activity of the nanosheets was investigated against methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes employing a solar simulator as the source of photons (light source). The nanosheets were found to photodegrade 80% of MB, 77% of RhB and 60% of MO in 120 min of light illumination. Reusability and post catalytic properties affirm the durability and stability of the nanosheets, which is very important in the context of waste water treatment considering the toxic nature of the effluents from dye industries.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3