Abstract
Abstract
The use of conventional fabrication methods rapidly developed the performance and notable enhancements of optoelectronic devices. However, it proved challenging to develop and demonstrate stable optoelectronic devices with biodegradability and biocompatibility properties towards sustainable development and extensive applications. This study incorporates a water-soluble Cr-phycoerythrin (Cr-PE) biomaterial to observe its optical and electronic properties effects on the pristine indium gallium zinc oxide (IGZO)-based photodetector. The fabricated photodetector demonstrates an extended absorption detection region, enhanced optoelectronic performance, and switchable function properties. The resulting photocurrent and responsivity of the IGZO/Cr-PE structure have increased by 5.7 and 7.1 times as compared to the pristine IGZO photodetector. It was also observed that the photodetector could operate in UV and UV–visible with enhanced optical properties by effectively adding the water-soluble Cr-PE. Also, the sensing region of IGZO photodetector becomes changeable. It exhibits switchable dual detection by alternatively dripping and removing the Cr-PE on the IGZO layer. Different measurement parameters such as detectivity, repeatability, and sensitivity are highlighted to effectively prove the advantage of including Cr-PE on the photodetector structure. This study contributes to understanding the potential functions in improving optoelectronic devices through an environmental-friendly method.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献