High performance Pt-anchored MoS2 based chemiresistive ascorbic acid sensor

Author:

Biswas Arpita,Kumar Ashok,Kumar Amit,Kwoka MonikaORCID,Bassi Gaurav,Kumar MukeshORCID,Kumar MaheshORCID

Abstract

Abstract Ascorbic acid (AA), known as vitamin C, is a vital bioactive compound that plays a crucial role in several metabolic processes, including the synthesis of collagen and neurotransmitters, the removal of harmful free radicals, and the uptake of iron by cells in the human intestines. As a result, there is an absolute need for a highly selective, sensitive, and economically viable sensing platform for AA detection. Herein, we demonstrate a Pt-decorated MoS2 for efficient detection of an AA biosensor. MoS2 hollow rectangular structures were synthesized using an easy and inexpensive chemical vapor deposition approach to meet the increasing need for a reliable detection platform. The synthesized MoS2 hollow rectangular structures are characterized through field effect scanning electron microscopy (FESEM), energy-dispersive spectroscopy elemental mapping, Raman spectroscopy, and x-ray photoelectron spectroscopy. We fabricate a chemiresistive biosensor based on Pt-decorated MoS2 that measures AA with great precision and high sensitivity. The experiments were designed to evaluate the response of the Pt-decorated MoS2 biosensor in the presence and absence of AA, and selectivity was evaluated for a variety of biomolecules, and it was observed to be very selective towards AA. The Pt-MoS2 device had a higher response of 125% against 1 mM concentration of AA biomolecules, when compared to that of all other devices and 2.2 times higher than that of the pristine MoS2 device. The outcomes of this study demonstrate the efficacy of Pt-decorated MoS2 as a promising material for AA detection. This research contributes to the ongoing efforts to enhance our capabilities in monitoring and detecting AA, fostering advancements in environmental, biomedical, and industrial applications.

Funder

Department of Science and Technology

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3