Reversible synthesis of GO: Role of differential bond structure transformation in fine-tuning photodetector response

Author:

Shabir Abgeena,Abid ,Sehrawat Poonam,Julien C M,Islam S SORCID

Abstract

Abstract The controlled modification of graphene’s electronic band structure poses serious challenges. In the present work, we study the effect of sp 2 cluster size variation on the electronic band gap and photoconductive properties of reduced graphene oxide (RGO). This is achieved by performing reversible functionalization of RGO with oxygen species. The reversible functionalization of RGO results in its partial transformation to graphene oxide (GO) so that the size of the sp 2 clusters within the sp 3 matrix varies, thereby affecting the π-π* band structure and photoconductive properties. The study reveals: (1) incremental creation/elimination of oxygenated surface bonds’ related energy states within the π-π* band; (2) customized tuning of the sp 2/sp 3 ratio; (3) the presence/absence of oxygenated states impacts the optical transition processes both from band-to-band and oxygenated states; and (4) the incremental addition/depletion of surface states in a tunable manner directly influences the carrier transport in the photoconductive device. Experiments show a two-stage transformation of RGO electronic properties with changing oxygen functionalities: oxidation (Stage I) and decomposition or erosion (Stage II). Sp 2 cluster size variation induced bandgap change was analyzed by Raman and photoluminescence studies, indicating the possibility for photodetection in a specific band encompassing NIR to UV, depending on the sp 2/sp 3 ratio. Energy-dispersive x-ray spectroscopy and Fourier transform infrared studies confirm the surface oxygenation/de-oxygenation during plasma treatment, and XRD confirms partial transformation of RGO to GO and its amorphization at higher plasma exposure times. In addition, the photodetector performance is optimized in terms of carrier generation-recombination and carrier-lattice scattering. Thus, manipulating better photoconductive response is possible through suitable handling of the parameters involved in the plasma treatment process. This is the first study on the influence of the sp 2/sp 3 ratio-induced lattice structure evolution on photodetection.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3