Approximation of Functions in Multi-criterial Synthesis of Composite Materials

Author:

Budylina Eugenia,Garkina Irina,Danilov Alexander

Abstract

Abstract A prerequisite for the synthesis of composite materials as complex systems is the principles of the control paradigm of Peace and the effectiveness of mathematics (for any reality and any given (not absolute) accuracy, there is a mathematical structure that describes this reality with this accuracy; the converse is also true (homomorphism, arbitrarily close to isomorphism between reality and mathematical structures)).The proposed methodology for managing the identification process (design of composites) includes the process of human choice: the probabilistic nature of the control; the main reason for the inadequacy of a purely analytical research procedure. Here, the optimization of the control of the properties of the composite is carried out experimentally on the model as a result of the approximation of the response function: not the generalized functional is approximated, but the particular criteria of which it consists. The development of composite materials is carried out on the basis of evaluating the parameters of the formation of operational properties. The parameters of each of the kinetic processes of the formation of the physical and mechanical characteristics of the material were taken as particular criteria. Kinetic processes are asymptotic for the composites under study and contain extremum and inflection points. A method is used to approximate multidimensional table-defined functions by generalized polynomials of a particular form. In the parametric identification of kinetic processes, their parameters are considered basic. Approximating models of the main properties are presented. Vector optimization of properties (selection of recipes, technologies and methods of material quality control) is carried out by overcoming ambiguities of goals using linear convolution, introducing benchmarks, building Pareto sets, etc. The expediency of using a systematic approach (the hierarchical structure of properties and the hierarchical structure of the composite proper) to the design of building materials as complex systems is shown. The research results are introduced as prototypes of new identification systems in the development of composite materials with adjustable structure and properties, in contrast to the replication of reference applied developments of identification theory in various industries.

Publisher

IOP Publishing

Subject

General Medicine

Reference9 articles.

1. Composite Materials: Identification, Control, Synthesis;Garkina;IOP Conference Series: Materials Science and Engineering,2019

2. Analytical methods for the synthesis of composites;Garkina;Key Engineering Materials,2020

3. Analytical Description of the Kinetic Processes of Forming the Properties of Composites;Garkina;IOP Conf. Series: Materials Science and Engineering,2020

4. Mathematical Methods of System Analysis in Construction Materials;Garkina;IOP Conf. Series: Materials Science and Engineering,2017

5. The Experience of Designing Building Materials;Garkina;IOP Conf. Series: Materials Science and Engineering,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3