Comparison of Missing Rainfall Data Treatment Analysis at Kenyir Lake

Author:

Azman Azreen Harina,Tukimat Nurul Nadrah Aqilah,Malek M A

Abstract

Abstract Rainfall is one of the frequent data used in weather-related studies. Sometimes the data have missing information that needs the treatment to make sure the data can be useful, complete and reliable. There are many methods in treating missing data suggested by previous studies. The best selected method to estimate missing rainfall data in different regions may vary depending on the rainfall pattern and spatial distribution. Therefore, this paper discussed and compared 3 different methods in missing data treatment. The selected methods are Expectation Maximization (EM), Inverse Distance Weighted (IDW) and Multiple Imputation (MI). After analysis, the best method is IDW based on root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (r) and percentage of error (% of error) values. The IDW method has RMSE, MAE values and the lowest % of error values. In addition, the r value of IDW method is highest compared to EM and MI method. MI method recorded the highest values of RMSE, MAE and % of error with the lowest r value that proved MI method is the least accurate method to use in missing data treatment. After all methods were implemented, it proved that the IDW method is the best way to treat missing data because the analysis shows monthly rainfall distribution for 4 treatment stations in line to 3 missing data stations compared to EM and MI methods.

Publisher

IOP Publishing

Subject

General Medicine

Reference13 articles.

1. Alternative approaches for estimating missing climate data: application to monthly precipitation records in South-Central Chile;Barrios;For. Ecosyst,2018

2. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques;Fenta Mekonnen;Hydrol. Earth Syst. Sci.,2018

3. Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach;Simolo;Int. J. Climatol,2010

4. Application of different statistical methods to recover missing rainfall data in the Klang River catchment;Khalifeloo;Int. J. Innov. Sci. Math.,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3