Review on recent advance biosynthesis of TiO2 nanoparticles from plant-mediated materials: characterization, mechanism and application

Author:

Syamsol Bahri Syamsutajri,Harun Zawati,Khadijah Hubadillah Siti,Norhayati Wan Salleh Wan,Rosman Nurafiqah,Hasliza Kamaruddin Noor,Hafeez Azhar Faiz,Sazali Norsuhailizah,Adiba Raja Ahmad Raja,Basri Hatijah

Abstract

Abstract Titanium dioxide, TiO2 nanoparticles are being utilized in various application of science and technology including membrane, medical, electrical and chemical field for their respective worth which generally attributed to the self-cleaning and photocatalytic ability, good band gap, an antibacterial as well as physical and chemical stability. As commonly known conventional TiO2 nanoparticles synthesized using chemicals as reducing agents has become accountable for various biological risks due to their general toxicity, thus engendering the serious concern in developing environment friendly processes. Naturally derived products, such as extracts of plants that composed of biomolecules, have been used intensively recently as a reductant agent, that also sometimes can be acting as capping agents after synthesis process. These natural biomolecules mostly consisted of polyphenols have been identified to be actively play a role in this biosynthesis of nanoparticles from any plants extract that able to form different shapes and sizes of nanoparticles with better surface reactive area, characteristic and properties. Therefore, biosynthesis can be considered as a driving force for the greener, safe and environmentally friendly for many applications that have used TiO2 particles either used as additive, purely or in composite form. The present review targets on the ‘greener’ routes of synthesis TiO2 nanoparticles with an emphasis on experimental conditions based on sustainable methodologies and also explores the huge plant diversity to be utilized. The use of ‘greener’ not only reduces the cost of synthesis but also minimizes the need of using hazardous chemicals and stimulates green synthesis. This review also focuses on aspects characteristic and properties that generated from the output of this green process that make it strongly applicable to certain applications as for binding of biomolecules, to the biosynthesized is significantly benefit to biomedical fields. It is expected that these outstanding findings will encourage researchers and attract newcomers to continue and extend the exploration of possibilities offered by nature and the design of innovative and safer methodologies towards the synthesis of nanomaterials, possessing desired features and exhibiting valuable properties that can be exploited in a profusion of fields.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3