A significant review on beam optimization for boron neutron capture therapy

Author:

Shalbi S,Sazali N,Wan Salleh W N

Abstract

Abstract The thermal column at the TRIGA PUSPATI (RTP) research reactor can produce thermal neutron. However, the optimization on the thermal neutron flux produced should be performed to gain a sufficient thermal neutron for boron neutron capture therapy purpose. Thus, the objective of this review is to optimize the thermal neutron flux by designing the collimator with different materials at the thermal column. In order to fulfil the requirement, set by the IAEA standard, the study of BNCT around the world was being reviewed to study the suitable measurement, material, design, and modification for BNCT at the thermal column of TRIGA MARK-II, Malaysia. Initially, the BNCT mechanisms and history was review. Then, this paper review on the design and modifications for BNCT purpose around the world. Based on this review, suitable material and design can be used for the BNCT in Malaysia. Moreover, this paper also reviews the current status of BNCT at the RTP with the measurement of the thermal neutron flux was conducted along the thermal column at 250 kW. The thermal column of RTP was divided into 3 phases (Phase 1, Phase 2 and Phase 3) so that an accurate measurement can be obtained by using gold foil activation method. This value was used as a benchmark for the neutron flux produced from the thermal column. The collimator was designed using different types of materials, and their characteristic towards gamma and neutron flux was investigated. The reviewed demonstrated that the final thermal neutron flux produced was significantly for BNCT purpose. Lastly, this paper recommends the future research can be conducted on BNCT at RTP.

Publisher

IOP Publishing

Subject

General Medicine

Reference46 articles.

1. Global cancer statistics 2018 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Bray;CA Cancer J Clin,2018

2. Design of an epithermal column for BNCT based on D–D fusion neutron facility;Durisi;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2007

3. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy;Faião-Flores;Appl. Radiat. Isot.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3