Development and research carbon nanotube-based resistive gas sensor

Author:

Il’in O I,Il’ina M V,Rudyk N N,Guryanov A V,Fedotov A A

Abstract

Abstract Experimental studies of the processes of formation of catalytic centres (CC) and carbon nanotubes (CNTs) at ITO contacts have been carried out. The regularities of the influence of the annealing temperature on the geometric dimensions of CC have been established. An array of interwoven CNTs with a highly developed surface has been grown. A model of a gas sensor with a sensitive element based on a CNT network has been created. The reaction time and reaction of the sensor, its sensitivity to N2, O2, and Ar have been experimentally investigated. It has been shown that the sensor has a maximum sensitivity of 17.2% to N2, 16.3% to Ar, and 18.7% to O2 in the range of gas concentrations from 30 to 70 ppm. It has been shown that gas detection is possible at room temperature, despite a rather long reaction and reduction time. In this case, an almost complete restoration of the sensitive element of the initial resistance has occurred without additional heating.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3