A study on group lasso for grouped variable selection in regression model

Author:

Sunandi E,Notodoputro K A,Sartono B

Abstract

Abstract Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Bayes Wavelet Regression Approach to Solve Problems in Multivariable Calibration Modeling;Setiawan;IPTEK: The Journal for Technology and Science,2010

2. Regression Shrinkage and Selection Via the Lasso;Tibshirani;Journal of the Royal Statistical Society. Series B (Methodological),1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3