Discrimination between Healthy and Unhealthy Mole Lesions using Artificial Swarm Intelligence

Author:

Aljanabi Mohanad,Abed Jameel Kaduim,Abd H.J.,Duhis Ahmed Hussein,Abdallh Ammar O.,Alanı Nadia

Abstract

Abstract In recent years, occurrence rates of skin melanoma have shown a rapid increase, resulting in enhancements to death rates. Based on the difficulty and subjectivity of human clarification, computer examination of dermoscopy images has thus developed into a significant research field in this area. One the reasons for applying heuristic methods is that good solutions can be developed with only reasonable computational exertion. This paper thus presents an artificial swarm intelligence method with variations and suggestions. The proposed artificial bee colony (ABC) is a more suitable algorithm in comparison to other algorithms for detecting melanoma in the skin tumour lesions, being flexible, fast, and simple, and requiring fewer adjustments. These is characteristics are recognized assisting dermatologists to detect malignant melanoma (MM) at the lowest time and effort cost. Automatic classification of skin cancers by using segmenting the lesion’s regions and selecting of the ABC technique for the values of the characteristic principles allows. Information to be fed into several well-known algorithms to obtain skin cancer categorization: in terms of whether the lesion is suspicious, malignant, benign (healthy and unhealthy nevi). This segmentation approach can further be utilized to develop handling and preventive approaches, thus decreasing the danger of skin cancer lesions. One of the most significant stages in dermoscopy image examination is the segmentation of the melanoma. Here, various PH2 dataset image were utilized along with their masks to estimate the accuracy, sensitivity, and specificity of various segmentation techniques. The results show that a modified automatic based on ABC images have the highest accuracy and specificity compares with the other algorithms. The results show that a modified automatic based on ABC images displayed the highest accuracy and specificity in such testing.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin Melanoma Diagnosis Using Machine Learning and Deep Learning with Optimization Techniques: Survey;BIO Web of Conferences;2024

2. Implementation of a healthcare monitoring system based on IoT;THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022);2023

3. Based on IoT: Design and implementation of health care monitoring system;THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022);2023

4. Design of Patient Health Monitoring Using ESP8266 and Adafruit IO Dashboard;2022 International Conference on Electrical, Computer and Energy Technologies (ICECET);2022-07-20

5. Design and implementation of pulse rate monitoring over internet using thingSpeak and ESP8266;2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3