Design of a small size PTC: computational model for the receiver tube and validation with heat loss test

Author:

Salvestroni M,Pierucci G,Fagioli F,Pourreza A,Messeri M,Taddei F,Hosouli S,Rashidi H,Lucia M De

Abstract

Abstract In EU, the residential sector is responsible for the 40% of the total energy consumption. The integration of solar technologies in buildings is therefore necessary in order to reduce the use of fossil fuels. Concentrating collectors could offer an interesting solution but nowadays their application in buildings is rare due to high costs, large dimensions and complexity of the system. A novel small parabolic trough collector (PTC) has been conceived to overcome these limits and to allow the integration in buildings. The main features of realized prototype are the compact dimensions, strongly reduced compared to the PTC standards, and modularity. The paper deals with the numerical analysis necessary to design the concentrating collector properly and its validation with experimental results. An optical analysis has allowed to select the optimum values for the parameters of the parabola, aperture and rim angle. A thermo-fluid dynamics finite element model has been developed with Comsol Multiphysics, to analyse the relevant physical characteristics and to predict the performance of the receiver tube. The efficiency curve of the collector has been extracted. Successively a receiver tube has been built based on the indications of FEM model for what concerns geometry and materials. In order to evaluate the heat loss of the receiver and to validate the finite element model, a test bench has been realized. The results of off-sun heat loss tests on the receiver tube are reported for several temperatures. The computational model is in good agreement with experimental results and therefore it is validated.

Publisher

IOP Publishing

Subject

General Medicine

Reference9 articles.

1. Europe’s buildings under the microscope A Country-by-country review of the energy performance of buildings;Economidou,2011

2. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector;Cheng;International Communications in Heat and Mass Transfer,2010

3. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector;He;Renewable Energy,2011

4. Heat transfer analysis of parabolic trough solar receiver;Padilla;Applied Energy,2011

5. Performance simulation of a parabolic trough solar collector;Huang;Solar Energy,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3