Effects of blood flow patent and cross-sectional area on hemodynamic into patient-specific cerebral aneurysm via fluid-structure interaction method: A review

Author:

Najihah Mohd Nazri Nurul,Uzair Matalif Muhammad,Azrul Hisham Mohd Adib Mohd

Abstract

Abstract Fluid-structure interaction (FSI) simulation is carried out to investigate the blood flow analysis in different patient-specific cerebral aneurysms. In this study, we reviewed the studies done on the numerical simulation of blood flow in patient-specific aneurysm by using FSI analysis methods. Based on these studies, the wall shear stress (WSS) plays an important role in the development, growth, and rupture of the cerebral aneurysm. Prediction of the hemodynamic forces near the aneurysmal site helps to understand the formation and rupture of the aneurysms better. Then most of the aneurysms studied are located in the middle cerebral artery (MCA). In the existing considered, many researchers are more familiar with the experimental method in studies of blood flow through cerebral aneurysm compared to the numerical method. Nevertheless, numerical simulation of patient-specific cerebral aneurysms can give a better understanding and clear visualization of WSS distribution and fluid flow pattern in the aneurysm region.

Publisher

IOP Publishing

Subject

General Medicine

Reference25 articles.

1. Intracranial aneurysms;Schievink;N Engl J Med.,1997

2. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study;Hoi;J Neurosurg.,2004

3. Magnitude and role of wall shear stress on cerebral aneurysm computational;Shojima;Stroke,2004

4. In vitro measurements of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs;Tateshima;Stroke,2003

5. Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: Effect of hypertension and modulus of elasticity;Sutalo,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3