Multibody system simulation as a predictive tool for possible estimation of negative effects caused by vibrations of FDM device

Author:

Kaščak J,Kočiško M,Knapčíková L,Coranič T,Tôrôk J

Abstract

Abstract The design of fused deposition modeling (FDM) devices in their current form is associated with many negative effects, which result mainly from their construction deficiency. Due to the constant effort to increase the accuracy and speed of these devices, we often encounter the emergence of various negative factors. One of the most significant factors is the presence of negative vibrations of the frame and individual components. These are directly linked to several shortcomings that FDM devices come with. Efforts to make the structures as simple as possible, their low weight or the use of filament extruders placed directly on the printheads and axis travels, are perceived as well-known shortcomings. These negative phenomena are subsequently manifested by the emergence of specific defects visible on the surface of the manufactured models. The article presents the possibility of predicting the occurrence of these negative phenomena, with the use of multibody simulation. This simulation analyzes the movements of a specific device at different print speeds. The article then presents the results of these simulations and analysis of the transmission of negative oscillations at specific critical points of the FDM device. Finally, the article examines the influence of possible regulation of devices acceleration rates caused by electrical motors in individual axes and their influence on the final surface quality of the manufactured model. The article points out the possibilities of using this type of simulation processes and analysis in the design process of new types of frames and translation mechanisms for FDM devices.

Publisher

IOP Publishing

Subject

General Medicine

Reference18 articles.

1. Stability of finite element models for distributed-parameter optimization and topology design;Joga;Computer Methods in Applied Mechanics and Engineering,1996

2. Development of an intelligent and automated system for lean industrial production, adding, maximum productivity and efficiency in, the, production process;Araújo,2018

3. Parameter identification of cutting forces in crankshaft grinding using artificial neural networks;Pavlenko;Materials,2020

4. Utilization of Optimization of Internal Topology in Manufacturing of Injection Moulds by the DMLS Technology;Coranic;Applied Sciences,2021

5. Digital twin of experimental workplace for quality control with cloud platform support;Zidek,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3