Non-isothermal Steady Flow of Non-Newtonian Fluid in an Axisymmetric Channel

Author:

Borzenko E I,Ryltseva K E,Shrager G R

Abstract

Abstract Non-isothermal steady-state flow of a viscoplastic fluid in an axisymmetric channel is studied with account for viscous dissipation at a specified constant flow rate. The rheology of the medium is described by the Herschel-Bulkley law with a temperature dependence of yield stress and consistency defined by exponential law. On the solid wall, the no-slip boundary condition and the assigned temperature are used. The mathematical statement of the problem includes the dimensionless motion and energy equations and boundary conditions. The problem is solved numerically using a finite-difference approach. The difference equations are solved by sweep method. When applying a shock-capturing method for calculating the flow, the rheological model is regularized in order to eliminate stress singularity in the regions of zero shear rates. The steady-state distributions of velocity, temperature, viscosity, and dissipative function are obtained. A limiting value of pressure drop defining the existence domain of a steady solution is proved to exist. Two problem solutions are obtained at a specified pressure drop, which are referred to as high- and low-temperature flow regimes. As a result of computations, different flow structures with unyielded regions occurring near symmetry line and in the dead zone next to a solid wall are revealed.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3