Design of tools with the cutting part of the original profile for high-speed milling

Author:

Vakulin M S,Gordeev Yu I,Yasinsky V B

Abstract

Abstract This paper considers and justifies the design of the cutting part of multi-edge contour mills with the increased performance and surface quality. The numerical experiments using the finite element method (FEM) allow determining stresses and deformations in the layer of the material being cut when processed by multi-edge mills of a new type, i.e. they allow evaluating indirectly unit loads during milling. The required shape and dimensions of the cutting wedge were determined taking into account various values of the geometric parameters of the cutting part, the properties of the workpiece material and cutting conditions. All the above resulted in a 3D model of the end mill, which had got a trapeze-shaped tooth located along two intersecting helical lines with tilt angles of 22 and 85 degrees. Along with improving the quality of the processed surface, the experimental studies also showed a change of chip shape. The chip has a finely crushed structure; the sizes of its elements are about 2 μm, which agrees nicely with the results of the FEM preliminary estimates.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3