Development and Design of Energy Efficient Oil-Flooded Screw Compressors

Author:

Abdan S,Basha N,Kovacevic A,Stosic N,Birari A,Asati N

Abstract

Abstract It is estimated that about 17% of the world’s generated power is used for compression. Thus all, even minor improvement of the efficiency of compressors will substantially reduce CO2 emission. This paper presents development of family of energy efficient oil-flooded screw compressors for Kirloskar Pneumatic Company Ltd. The developmental techniques adopted to improve efficiency such as introduction of superior ‘N’ rotor profile, rotor clearance management, performance calculation using 3D CCM (Computational Continuum Mechanics), direct parametric interface to CAD (Computer Aided Design), which contains bearing selection for complete 3D solid modelling. Also, contemporary prototyping and experimental investigation is supported by the fully computerised data acquisition and processing. The cumulative improvement of all these elements of the design process resulted in a very efficient machine which guarantees the competitive position of Kirloskar Pneumatic Company Limited in the screw compressor market.

Publisher

IOP Publishing

Subject

General Medicine

Reference18 articles.

1. Three Decades of Modern Practice in Screw Compressors;Stosic,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of compression high-temperature heat pump steam system: Status and trend;International Journal of Refrigeration;2024-08

2. High-pressure liquid refrigerant injection for reciprocating compressors;International Journal of Refrigeration;2024-08

3. Experimental Analysis of Twin Screw Compressor's Energetic Efficiency Depending on Volume Ratio;Engineering, Technology & Applied Science Research;2024-04-02

4. Oil drag loss in oil-flooded, twin-screw compressors;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-07-27

5. Numerical investigation of oil injection in screw compressors;Applied Thermal Engineering;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3