Effect of Initial Temper on the Warm Forming Characteristics of a High Strength 7000-series Al-Zn-Mg-Cu Alloy

Author:

DiCecco S,Di Ciano M,Butcher C,Worswick M

Abstract

Abstract In this work, the formability of a developmental 7000-series copper containing aluminium alloy was assessed at room temperature (RT), 150°C, 175°C and 200°C in pre-aged (PA), peak-aged (T6) and overaged (T76) tempers using Nakazima tests with stereoscopic digital image correlation (DIC) strain measurement. The limit strains were identified using a novel curvature-based approach to detect the formation of an acute neck. The tensile mechanical properties in these warm forming processing routes were characterized with and without a paint bake cycle. Finally, a thermo-mechanical tensile simulator was used to evaluate the constitutive response of the PA and T76 tempers as a function of strain-rate and time at 175°C. Formability results found the selected PA temper to have a good room temperature formability and a mild positive response to the selected warm-forming cycles. The T6 and T76 tempers both exhibited increases in formability in response to warm forming. The PA temper had a significant positive response to short-duration warm forming and subsequent paint baking, with the yield strength increasing from 420 MPa to 512 MPa following this thermal cycle. For the T6 temper, the warm-forming cycle showed a trend characteristic of retrogression and re-aging, with the warm-forming cycle dropping the yield strength from 566 MPa to 534 MPa and the subsequent paint-bake re-aging to 554 MPa. The effect of aging during pre-heating prior to warm forming on the warm constitutive response of the PA and T76 tempers was also investigated. Both tempers exhibited rather different aging responses to short-duration thermal cycles. In the PA temper, this manifested as an increase in at-temperature yield strength and loss of hardening rate. In contrast, the T76 temper exhibited a drop in strength since this temper is already over-aged prior to warm forming. Both the PA and T76 tempers showed comparable at-temperature strain-rate sensitivity.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3