Using 3D scanning to support conservation treatments for paintings

Author:

Tissen L N M,Seymour K,Dubbeldam S,Hardardottir S,Jerdonekova I,Molenaar C,Schilder J,Elkhuizen W S

Abstract

Abstract Various imaging techniques are used to visualise issues regarding a painting’s appearance before, during and after conservation treatments, i.e. visible light photography (VIS) raking light photography (RAK), ultraviolet fluorescence photography (UVF) and reflectance transformation imaging (RTI). However, these techniques cannot always visualise and/or quantify conservation issues. This paper presents a new approach: colour, gloss, topography imaging (CGT). CGT’s applicability as a non-invasive tool for evaluating and documenting conservation treatments in comparison to VIS, UVF, RAK and RTI is discussed. Applying this to case studies with different conservation dilemmas illustrates the technique’s potential and drawbacks. CGT can visualise issues such as gloss variations, resulting from (previous) cleaning tests, (partial) varnish removal, and possibly dirt and material degradation. Furthermore, CGT can elucidate topographical issues such as bulging, and losses, and also visualise high-frequency surface variations (e.g. canvas weave and crack pattern). This results in an improvement of documenting a painting’s condition, and the evaluation of treatments and their effects on the visual appearance may be quantified. In conclusion, this research shows that CGT is able to better visualise texture, gloss and colour information than existing techniques like technical photography, facilitating a more precise documentation and localisation of previous and current conservation treatments.

Publisher

IOP Publishing

Subject

General Medicine

Reference13 articles.

1. Gloss, Color and Topography Scanning for Reproducing a Painting’s Appearance using 3D printing;Elkhuizen;ACM J. Comput. Cult. Herit.,2019

2. Comparison of three 3D scanning techniques for paintings, as applied to Vermeer’s ‘Girl with a Pearl Earring’;Elkhuizen;Herit. Sci.,2019

3. Revisiting Reflectance Transformation Imaging (RTI): A Tool for Monitoring and Evaluating Conservation Treatments

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3