Hydro-generators fault diagnosis with short-time-wavelet-entropy and variational auto-encoder

Author:

Zemouri Ryad,Bernier Simon,Kokoko Olivier,Merkhouf Arezki

Abstract

Abstract The prognosis and health management (PHM) of hydroelectric plants are full of difficulties caused by the complexity of the hydro-generators where each machine is different and almost unique. At industrial level, several tools are used to monitor the generator condition. Among these tools, the measurement of magnetic stray flux is one which is gaining interest. This measurement is generally based on an inductive sensor and mainly mounted near the stator. The main advantages of the magnetic stray flux are the non-invasive nature and the simplicity of its implementation. In this work, the discrete wavelet transform (DWT) is used to decompose the stray flux signal. Short-Time-Wavelet-Entropy (STWE) is then applied to extract the features from the sub-bands. Finally, a variational auto-encoder (VAE) is used in an unsupervised learning process to structure the STWE signatures of more than 400 stray flux measurement collected on real hydroelectric plants. The obtained results show that the VAE has well captured the features from the wavelet entropy (WE) signatures. An analysis of the resulting latent space shows a strong correlation between a given trajectory in the reduced space and an increase of the WE.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3