A numerical analysis of ZnTe/AZO as tunnel junction in CdTe/Si tandem solar cell

Author:

Isah M,Doroody C,Rahman K S,Harif M N,Tiong S K,Amin N

Abstract

Abstract Recently, interest has shifted towards developing multijunction or tandem solar cells due to their high potential to generate higher efficiency than traditional single-junction solar cells. Cadmium telluride (CdTe) and silicon (Si) solar cell materials have demonstrated significant potential in photovoltaic energy generation as tandem structures if fully developed. One approach for optimising CdTe/Si is to develop an effective tunnel junction that can electrically and optically interconnect the cadmium telluride and silicon cells with minimal loss. The wxAMPS 3.0 numerical simulation was used in this work to develop CdTe/Si tandem using zinc telluride/aluminium doped zinc oxide (ZnTe/AZO) as a tunnel junction (TJ). The result obtained shows an optimum efficiency of over 36 % with Voc = 1.945 V, Jsc = 21.519 mA/cm2, and FF = 86.823 % utilising the optimal 200 nm CdTe and Si absorber thickness of 300 μm. An analysis of the demonstrated results suggests that ZnTe/AZO tunnel junction will significantly contribute to the realisation of the CdTe/Si tandem solar cell. Hence, upon inserting a 40 nm highly doped ZnTe/AZO tunnelling junction to a CdTe/Si tandem configuration, the solar cell’s performance was enhanced by 48.190%.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3