Carbonic anhydrase (CA) activity by Chlorella sp. in immobilised matrix under carbon dioxide rich cultivation condition.

Author:

Kassim M A,Adnan M F I M,Tan K M,Bakar M H A,Lalung J,Mohamed M S

Abstract

Abstract The continuous release of global CO2 and greenhouse gases into the atmophere is considered one of the major contributors for global warming. Currently, microalgal biosequestration using enzyme carbonic anhydrase (CA) has been reported to be one approach that could be applied to overcome the issue. Eventhough this enzyme has been proven to show its potential to convert atmospheric CO2 to bicarbonates, there are remaining issues related to its stability and production parameters that need to be addressed. In this study, the activity of CA produced by immobilized microalgae Chlorella sp. cultivated in a laboratory environment was investigated. For this study, the influence of cultivation conditions such as pH value ranging from 4.00 to 12.00, light intensity ranging from 330 lux to 1000 lux and CO2 concentration ranging from 0.04% to 25% on CA activity were investigated. This present study indicates that the highest CA activity of 1.908 U/min was observed for the cultivation was performed using 15% CO2 with a pH of 8.00 and a light intensity of 550 lux. This suggested that the entrapment of microalgal using a suitable matrix carrier could produce higher CA activity which could be further utilised for extended biomimetic CO2 capture systems.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3