Evaluation of electromagnetic radiation shielding characteristics of facing building vaterials

Author:

Panova O V,Krasnianskyi G Iu,Aznaurian I O

Abstract

Abstract The article presents the results of theoretical studies of the protective properties of composite facing materials based on a dielectric matrix with an electrically conductive non-magnetic filler in a wide frequency range of incident electromagnetic radiation. Expressions are got for the values of the transmission, reflection and absorption, and the electromagnetic radiation shielding efficiency calculated on their basis. The dependences of the permittivity and electrical conductivity of the composite on the volume fraction of the electrically conductive additive required for calculations were got based on the hypothesis of similarity, considering the nonzero conductivity of the dielectric matrix. Satisfactory agreement between the calculation results and the measured shielding characteristics of specimens of metal silicate materials based on calcium hydro silicates and copper powder was established. The results presented show the adequacy of the proposed calculation method and indicate that it can be used for preliminary estimates of the shielding characteristics when designing electromagnetic radiation shields based on composite facing materials.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology For Designing Facing Building Materials with Electromagnetic Radiation Shielding Functions;International Journal of Conservation Science;2024-02-28

2. Developing a Mesh for Electromagnetic Shielding of Vehicles’ Electronic Devices;Advanced Sciences and Technologies for Security Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3