Author:
Raksha S,Anofriev P,Kuropiatnyk O,Plitchenko S
Abstract
Abstract
The reliability of work according to the criteria of vibration stability of the stand for testing the axles of wheelsets for endurance is largely determined by the natural vibration frequencies of the stand. The work considers a stand with a lever structure for loading the tested axles. In order to determine the influence of the parameters of the cross-section of the links on the natural frequencies of the vibration stand, the frequency characteristics were obtained by the method of mathematical modeling for two variants of the design schemes of the stand. Studies have shown that increasing the cross-sectional area of the levers without measuring other linear dimensions leads to a simultaneous increase in their mass and cruelty. The rigidity of the levers is defined as for beams on two supports with a load of a transverse concentrated force. As a result, the calculated values of the natural frequencies of the stand vibrations change insignificantly. A deeper analysis of the Eigen frequency characteristics of the stand with the tools of the Matlab system made it possible to obtain linear regression equations with the coefficients of determination close to one. The obtained research results gave reason to expect a decrease in stresses in the metal structures of the stand with an increase in the cross-sectional area of the levers, however, the values of the natural frequencies of the stand vibrations vary within a few percent. The way to control the natural frequencies of the stand vibrations only by changing the profile parameters is ineffective.