Compressive Strength, Splitting Tensile Strength, and Chloride Penetration Resistance of Concrete with Supplementary Cementitious Materials

Author:

Mohamed Osama,Hawat Waddah Al,Najm Omar

Abstract

Abstract This article presents the outcomes of a study that examined the durability and mechanical characteristics of self-consolidating concrete (SCC) mix in which a percentage of the required ordinary Portland cement (OPC) was substituted with either fly ash or ground granulated blast furnace slag (GGBS). The first part of the study evaluates the chloride penetration resistance and compressive strength of SCC mixes in which OPC in a designed control mix was partially replaced in a series of mixes by fly ash in percentages ranging from 10% to 40%. It noted that replacing OPC with fly ash at each of the four percentages studies improved chloride resistance of concrete compared to the control mix made of 100% OPC as binder. The 40% fly ash mix was the best performer in terms of resistance to chloride migration in contrast with the 100% OPC mix. Samples prepared using the 40% fly ash mix SCC mixes had the lowest compressive strength after 7 days of moist curing. However, the 28-day compressive strength of 40% fly ash mix was a healthy 55.75 MPa, only slightly lower than the 100% OPC mix. Tests also showed that adding 2% or fewer basalt fibres to the SCC mix in which 40% of OPC improves concrete resistance to chloride migration in contrast with the 40% fly ash mix that didn’t contain basalt fibres. This paper also reports the relationship between splitting tensile strength and compressive strength of SCC mixes in which up to 80% of OPC was substituted with GGBS. A total of eight mixes were produced by varying the amounts of GGBS used to replace the OPC content of the control mix. The fresh properties were assessed through the flow test, visual stability index (VSI), and the T50. An empirical relationship was developed to predict the splitting tensile strength based on 28-day compressive strength, and its accuracy was evaluated in comparison to formulas in various design codes.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3