Study of natural gas powered solid oxide fuel cell simulation and modeling

Author:

Nafees A,Abdul Rasid R

Abstract

Abstract Solid oxide fuel cell (SOFC) system has been proposed to address the issue of waste gas emission due to gas flaring in oil and gas industry. System has unique advantage of consuming the waste gases and generating electricity as bye product. To analyze and quantify the proposed benefits, a robust cell performance model is highly desirable. A detailed understanding of SOFC component including electrode, electrolyte, interconnect, fuel processing and electrochemical reactions are first step in accurate determination of characteristic performance of the system. For this purpose, a review of modeling philosophies of SOFC system was undertaken in this study. Specifically, SOFC simulation and modeling using commercial software such as Aspen Plus, Aspen Hysys was focused in detail. SOFC models available in literature are either mathematical model or numerical models and ever evolving and improving. SOFC simulation rely on split approach due to absence of built-in module. Authors have developed an Aspen Hysys simulation model using split approach and discussed briefly here. Split approach approximates the SOFC phenomena, thereby inducing error. To overcome this deficiency, authors are developing a MATLAB based user model that can be integrated using ‘user unit operation’ available in Hysys. Details of the MATLAB program approach is included.

Publisher

IOP Publishing

Subject

General Medicine

Reference55 articles.

1. SOFC Modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling;Milewski,2011

2. Solid oxide fuel cell performance comparison fueled by methane, MeOH, EtOH and gasoline surrogate C8H18;Liso;Applied Thermal Engineering,2016

3. Materials and technologies for SOFC-components;Ivers-Tiffee;Journal of the European Ceramic Society,2001

4. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications;Weber;Journal of Power Sources,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3