Analysis of temperature and stress-strain fields during laser beam welding of a TRIP steel

Author:

Vrtiel Š,Behúlová M

Abstract

Abstract Transformation Induced Plasticity (TRIP) steels belong to the group of Advanced High Strength Steels (AHSS) that are characterized by good strength-strain combination and formability required for special applications in the automotive industry. The excellent combination of strength, ductility and formability of TRIP steels is achieved by a careful control of microstructure development in the process of their production. The microstructure of multiphase TRIP steels typically consists of ferrite, carbide-free bainite and metastable retained austenite, which can be transformed into martensite by plastic deformation. Upon crash, this feature allows the TRIP steels to absorb more energy, ensuring greater passenger safety. In the automotive industry, TRIP steels are mainly joined by resistance spot welding, laser or electron beam welding. Generally, the thermal cycle of a fusion welding process destroys the sophistically designed microstructure of these steels in fusion and heat-affected zones resulting in deterioration of mechanical properties of the weld joint. Negative consequences of the welding process can be eliminated using proper welding parameters. The paper deals with numerical simulation and analysis of the temperature and stress-strain fields developed during the laser beam welding of a CMnSiNb TRIP steel sheets with the thickness of 2 mm. Simulation model takes into account non-linear temperature and phase dependent material properties. The heat input during the laser beam welding is modelled using the conical volumetric heat source. The optimal welding parameters for production of butt joints of CMnSiNb TRIP steel sheets using the TruDisk 4002 disc laser with the maximum power of 2 kW are designed.

Publisher

IOP Publishing

Subject

General Medicine

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3