Mathematical methods for planning energy-efficient motion path of the manipulator anthropomorphic robot for the typical obstacles

Author:

Petrenko V I,Tebueva F B,Antonov V O,Gurchinsky M M

Abstract

Abstract Anthropomorphic robots (AR) have a problem of low work duration, that negatively affects their functioning efficiency in different environments. The article discusses the optimization of its manipulators energy efficiency when performing operations in the working area with an obstacle to reduce the energy consumption of robots. Increasing the useful life of the anthropomorphic robot on one cycle of charging is the purpose of the study. This happens due to reducing the energy consumption of manipulators with excessive mobility when operating in the working area with a typical obstacle through the planning of energy-efficient travel path. The article shows the results of the method development for planning the path of the AR manipulator in the working area with a typical obstacle in the shape of a sphere or a parallelepiped. The method for solving kinematics problems based on a geometric approach for kinematic chains consisting of rotational joints using the Denavit-Hartenberg representation is presented in the paper. The computational complexity of the proposed solutions is analized, the efficiency of the developed methods and algorithms is evaluated. #COMESYSO1120

Publisher

IOP Publishing

Subject

General Medicine

Reference22 articles.

1. Exoskeleton for Operator’s Motion Capture With Master-Slave Control;Petrenko,2019

2. Review of algorithms for planning the trajectory of manipulators;Pogorelov;Youth scientific and technical Bulletin,2016

3. Planning of the trajectories of the movement of the multi-link manipulator in a complex three-dimensional working space on the basis of the evolutionary methods;Kamilyanov,2007

4. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization;Lin;Journal of Intelligent and Robotic Systems: Theory and Applications,2014

5. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm;Qi;Jiqiren/Robot,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3