Validation of powder layering simulation via packing density measurement for laser-based powder bed fusion

Author:

Haapa E,Gopaluni A,Piili H,Ganvir A,Salminen A,Ottelin J

Abstract

Abstract Powder bed fusion using a laser beam (PBF-LB/M) is considered one of the most versatile additive manufacturing methods as the parts printed have high resolution thanks to the low layer thickness used. The powder packing density (PD) of the powder layer has a significant impact on the density, surface roughness and other mechanical properties of the built parts. Due to the difficulty of characterizing the powder bed in situ, simulation has often been used to study the powder behavior on the powder bed. However, in order for the simulation to have practical value, there must be some way of confirming the results via experimental methods, also called validation. The aim of this study was to develop a powder packing density-based validation method for a powder bed simulation. The developed method featured a simplistic “open cup” style sample which traps powder inside for PD measurement. The samples were built with an EOS M 290 PBF-LB/M system using Alloy 718 (also known as “IN718” or “Inconel”) powder. Average PD over the five built samples was 52.4 %, with a standard deviation of 0.2 %. The method was used to successfully validate a powder bed simulation with four recoated powder layers, modelled using FLOW-3D DEM simulation software from Flow Science Inc. Similar methods for PD characterization were found in literature, but in many cases the method does not fully correspond to the conditions of a simulated powder bed, the scale is very small, or the reliability of the PD measurement is not confirmed. The method presented in this study corresponds to typical powder bed simulation conditions, while retaining high reliability and repeatability of results.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3