Surface modification of activated carbon by surfactants mixtures

Author:

Kochkodan Olga,Maksin Victor,Antraptseva Nadiya,Kochkodan Viktor

Abstract

Abstract Adsorption of surfactants is widely used for surface modification of different materials. Using of the mixtures of the surfactants in many cases is more attractive compared with single surfactants, however composition of mixed adsorption layers at solid surface was not sufficiently studied yet. In this work, the mutual effect of anionic and nonionic surfactants on the composition of the mixed adsorption layer on the surface of activated carbon (AC) was studied. Sodium hexadecyl sulphate (SHS) and oxyethylated octylphenol Triton X100 (TX-100) were used as anionic and nonionic surfactants, respectively. Mixed SHS/TX-100 systems have been studied over a concentration range of 0.1-8.0 mmol/L and the molar fractions of SHS in the mixtures were within 0.2-0.8. It was shown that the adsorption isotherms of SHS or TX-100 surfactants at AC could be describe by the Langmuir equation. For surfactants mixtures at low equilibrium concentrations, it was found that adsorption of SHS increases when TX-100 is present in the solution. This might be explained by the decreasing of electrostatic interactions between the head groups of SHS molecules in the mixed adsorption layers due to incorporation of the molecules of the nonionic surfactant. At higher total surfactant concentrations, SDS adsorbed at AC surface is replaced by TX-100 molecules and as result the nonionic surfactants is preferentially adsorbed on AC.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. Synergism between non-ionic and cationic surfactants in a concentration range of mixed monolayers at an air-water interface;Bagheri;RCS Advances,2017

2. Adsorption capacity of NH4Cl-induced activated carbon for removing sodium dodecyl sulfate from water;Moussavi;Desalination and Water Treatment,2016

3. Fate, behavior and effects of surfactants and their degradation products in the environment;Ying;Environmental International,2006

4. Activated Carbon, Carbon Nanotubes and Graphene: Materials and Composites for Advanced Water Purification;Sweetman;Journal of Carbon Research,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3