Learning from Objects: the use of advanced numerical methods to exploit a complete set of information from experimental data, for the Mona Lisa’s Digital-Twin

Author:

Lorenzo RIPARBELLI,Fabrice BRÉMAND,Paolo DIONISI-VICI,Jean-Christophe DUPRE,Giacomo GOLI,Franck HESSER,Delphine JULLIEN,Paola MAZZANTI,Marco TOGNI,Elisabeth RAVAUD,Luca UZIELLI,Joseph GRIL

Abstract

Abstract The approach to wooden artefacts of historical importance, and panel paintings in particular, is a task that requires a multidisciplinary approach based on experimental observation of the artwork and advanced techniques to make these data actually useful for the knowledge and preservation of the object. This study illustrates how a series of scientific observations and instrumental analyses can be used to construct a numerical simulation that allows a deeper understanding of the physical structure and behaviour of the object itself, namely to construct a hygro-mechanical predictive model (a “Digital-Twin”) of Leonardo da Vinci’s Mona Lisa panel. Based on specific request from the Louvre Museum, a group of experts with different and complementary skills cooperated and are still cooperating to construct a complete set of experimental observation and non-invasive tests; so, the integration of the collected data made the construction of the panel’s Digital-Twin possible. This paper also specifically examines how the Digital-Twin can be used to compare two framing conditions of the panel; although the two experimental configurations are not inherently comparable, the comparison is made possible by the introduction of a technique of projection of the fields obtained as results of the two analyses, named the Projected Model Comparison (PMC), which has been developed specifically for this research.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3