A literature survey on recurrent attention learning for text classification

Author:

Mariyam Ayesha,Basha SK Althaf Hussain,Raju S Viswanadha

Abstract

Abstract Witha rapid rise of complex data every year needs more enrichment in machine learning methods to provide vigorous and accurate data classification. Deep learning models such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory(LSTM) have accomplished to obtain better results in the domain of computer vision, object recognition, speech recognition and natural language processing compared to traditional machine learning algorithms. This paper mainly discusses about the blending of attention mechanism with various deep learning models for text classification which improves the performance of text classification task.

Publisher

IOP Publishing

Subject

General Medicine

Reference8 articles.

1. A Hybrid Bidirectional Recurrent Convolutional Neural Network Attention-Based Model for Text Classification;Zheng;IEEE Access,2019

2. Attentional Recurrent Neural Networks for Sentence Classification;Kumar;Innovations in Infrastructure, Advances in Intelligent Systems and Computing,2018

3. Long Document Classification from Local Word Glimpses via Recurrent Attention Learning;He;IEEE Access,2019

4. Hierarchical Attention Networks for Document Classification;Yang,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural Language Processing System for Text Classification Corpus Based on Machine Learning;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-08-08

2. Graph neural networks for text classification: a survey;Artificial Intelligence Review;2024-07-01

3. Graph Neural Networks for Text Classification: A Survey;2023-12-12

4. Deep Learning Based Fake News Detection on Social Media;International Journal of Information Security Science;2023-06-28

5. The Scalable Fuzzy Inference-Based Ensemble Method for Sentiment Analysis;Computational Intelligence and Neuroscience;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3