Crash analysis of sandwich composite electric microbus

Author:

Jongpradist P.,Limpanawisut S.,Siritana A.,Saardying P.,Saingam N.,Tangthamsathit P.,Chanpaibool P.

Abstract

Abstract Sandwich composite is ideal for lightweight monocoque structure owing to not only its superiority in strength-to-weight ratio and specific flexural properties but also its manufacturability to any desired complex shape. In this work, an optimum lightweight design of monocoque composite sandwich-structure microbus subjected to bending and torsion stiffness criteria and natural frequency constraints is further investigated under crash conditions through finite element analysis. A composite sandwich panel made of 5.4-mm woven glass fabric-epoxy face sheets and 50-mm rigid polyurethane foam core is tested under low-velocity impact with a hemisphere headed impactor following ASTM D7136 to characterize the failure characteristics. An enhanced composite damage material model so-called MAT54 in LS-DYNA with damage progression in each lamina utilizing strength-based Chang-Chang criteria is implemented with various formulations to validate and compare for their efficiency and accuracy under impact test. The reduced-integration Balytschko-Tsay shell element with 5 through-thickness integration points is applied to the monocoque composite microbus model. The structural crashworthiness under the frontal crash of the bus at 20, 40 and 50 km/h to a rigid wall barrier is examined. The front structure absorbs the most frontal impact energy up to 60% and shows severe damage when the crash velocity is 40 km/h or higher. For the bus impact velocity of 50 km/h, the maximum deformation of the bus front is 809 mm resulting in the intrusion of the structure into the specified driver survival space. Design improvement of the sandwich structure should be further explored to enhance its energy absorption and safety of the bus under crash events.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3